Engineering Chart

Synthetic lubricants designed to add performance, life, and value to your product.

MOVING YOUR WORLD

SYNTHETIC OILS COMMONLY USED

Synthetic Oils	Temperature Range °C	Key Characteristics/Typical Applications
Alkylated Naphthalenes (AN)	-30 to 180	Compared to PAO and diesters, offer improved hydrolytic, thermal, and oxidative stability. Good blendstock for polyalphaolefins requiring high stability under extreme conditions.
Multiply-Alkylated Cyclopentanes (MAC)	-45 to 125	Highly specialized fluid that combines the low vapor pressure of a PFPE with the lubricity and film strength of a PAO. Typically used in aerospace and critical vacuum applications.
Perfluoropolyethers (PFPE)	-90 to 250	Extremely stable, nonflammable, chemically inert, low vapor pressure fluids. Used in extreme environments and to avoid plastic and elastomer compatibility problems.
Polyalphaolefins (PAO)	-60 to 125	Stable, lubricious fluids compatible with most plastics and elastomers. A drop- in replacement for petroleum, it's used in countless applications in many industries.
Polyglycols	-40 to 125	Good load-carrying ability, compatible with most elastomers, non-carbonizing. Often used in arcing switches.
Polyphenylethers (PPE)	+10 to 250	Radiation, chemical, and acid-resistant fluids. Traditionally used for noble- metal connectors and high-temperature mechanical components.
Silicones	-70 to 200	Stable fluids with good wetting characteristics. Commonly used with plastic gears, control cables, and seals.
Synthetic Esters	-65 to 150	Excellent wear resistance, stable, affinity for metals, handles heavy loads. Great for loaded bearings.

COMPATIBILITY OF							1	Plas	stic	5									El	ast	om	er					5	solv	/en	t		
SYNTHETIC BASE OILS G Good Fair Poor S Soluble W Weakly soluble Varies with grade Insoluble	Acetal (POM)	ABS	Phenolic (PF)	Polyamide-imide (PAI)	Polyamide (nylon) (PA)	Polycarbonate (PC)	Polyester	Polyetherimide	Polyethylene (PE)	Polyimide (TPI)	Polyphenylene oxide (PPO)	Polystyrene	Polysulfone (PSU)	PTFE	Polyvinyl chloride (PVC)	Terephthalate (PBT)	Buna S	Butyl	EPDM, EPR	Fluoroelastomer	Natural Rubber	Neoprene	Nitrile	Silicone	Water	Water plus detergent	Isopropanol	Methanol	Mineral Spirits	Fluoroalkane	Hydrofluorocarbon	Hydrofluoroether
Synthetic Hydrocarbon Includes: polyalphaolefin (PAO) Viscosity Index (VI) = 125-250	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Ρ	Ρ	Ρ	G	Ρ	G	G	F	I	w	I	I	s	I	I	I
Polyglycol Polyether Viscosity Index (VI) = 160-220	G	Р	G	G	G	Ρ	Ρ	G	F	G	Ρ	G	Ρ	G	Ρ	G	Ρ	Р	G	G	Ρ	Ρ	F	G	v	w	v	v	s	I	I	I
Ester Diester, polyolester Viscosity Index (VI) = 120-150	G	Ρ	G	G	G	Ρ	Ρ	G	F	G	Р	Ρ	Ρ	G	Ρ	G	Ρ	Ρ	F	G	Ρ	Ρ	F	F	I	w	I	I	s	I	I	I
Silicone Dimethyl-, phenyl-, haloge- nated Viscosity Index (VI) = 200-650	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ρ	I	w	I	I	s	I	I	I
Multiplyalkylated Cyclopentane Viscosity Index (VI) = 135	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Ρ	Ρ	Ρ	G	Ρ	G	G	F	I	w	I	I	s	I	I	I
Perfluoropolyether PFPE Viscosity Index (VI) = 100-350	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	I	w	I	I	I	s	v	v
Polyphenylether PPE Viscosity Index (VI) = 40-60	G	Ρ	G	G	G	Ρ	Ρ	G	F	G	Ρ	Ρ	Ρ	G	Ρ	G	Ρ	Ρ	F	G	Ρ	Ρ	F	F	I	×	I	I	s	I	I	I

GREASE GELLANTS COMMONLY USED

Gellants are selected for their water and salt-water resistance, thermal stability, thickening efficiency, lubricity, and shear stabulity.

Organic Soaps	Organic Non-Soaps
Lithium	Urea
Lithium Complex	PTFE
Sodium	In-Organic Non-Soaps
Sodium Complex	Bentonite Clay
Calcium	Silica
Calcium Complex	Hydrophobic Silica
Aluminum Complex	Metal Oxide

LUBRICANT ADDITIVES COMMONLY L

Additive Type

Antioxidant Antiwear (EP)

Antirust

Anticorrosion Filler

Fortifier (EP)

Lubricity

VI Modifier

Pour Point

Dye

GREASE STIFFNESS ANALOGS											
	Penetration (worked, 60x)	Analog (unworked)									
000	445 - 475	Ketchup									
00	400 - 430	Yogurt									
0	355 - 385	Mustard									
1	310 - 340	Tomato Paste									
2	265 - 295	Peanut Butter									
3	220 - 250	Butter									
4	175 - 205	Ice Cream									
5	130 - 160	Fudge									
6	85 - 115	Cheese									

CREACE CTIEFNECC ANAL

DITIVES COMMONLY USED	KINEMATIC VISCOSITY OF COMMON FLUIDS					
Capabilities	KV (cSt @ 25	Material				
Prolongs life of base oil	20,000,000		Du atata d			
Chemically active protection of loaded metal surfaces	20,000,000	_	Putty			
Slows rusting of iron alloys	5,000,000	-	Taffy			
Slows corrosion of non-noble metals	10,000	_	Chocolate Syrup			
Thermal/electrical conductivity, special physical properties	1,000	_	Castor Oil			
Solids burnish into loaded surface under extreme pressures						
Reduces coefficient of friction, starting	100	_	Gravy			
torque or stick/slip	3	_	Milk			
Reduces rate of change of viscosity with temperature			iviii k			
Improves lower temperature limit	1	-	Water			
Visual/UV markers as inspection/ assembly aids	.40	_	Almond Extract			

CALCULATING THE APPROXIMATE UNIT COST OF SYNTHETIC GREASE IN U.S. DOLLARS

Grease Pe	Amount of Grease Per Device (dia. in mm.)		Low Density	000 Units High Density c) (2gm/cc)	Grease Cost Per Device LD@\$10/lb. HD@\$100/lb. (1gm/cc) (2gm/cc)					
•	1	0.0003	0.066	0.13	\$0.000006	\$0.00013				
•	2	0.0021	0.46	0.93	\$0.00005	\$0.0009				
٠	3	0.007	1.54	3.09	\$0.00015	\$0.003				
	5	0.033	7.3	14.6	\$0.0007	\$0.015				
	10	0.26	57.3	114.6	\$0.006	\$0.11				

FUCHS LUBRICANTS CO.

17050 Lathrop Avenue | Harvey, IL 60426 | United States Phone + 1 708-333-8900 | E-mail inquiry@fuchs.com | www.fuchs.com/us