

NYE ENGINEERING CHART

Synthetic lubricants designed to add performance, life, and value to your product.

SYNTHETIC OILS COMMONLY USED AT NYE

Synthetic Oils	Temperature Range	Key Characteristics/Typical Applications
Alkylated Naphthalenes (AN)	-30 to 180 °C	Compared to PAO and diesters, offer improved hydrolytic, thermal, and oxidative stability. Good blendstock for polyalphaolefins requiring high stability under extreme conditions.
Pennzane® <i>from Shell</i> (MAC)	-45 to 125 °C	Highly specialized fluid that combines the low vapor pressure of a PFPE with the lubricity and film strength of a PAO. Typically used in aerospace and critical vacuum applications.
Perfluoropolyethers (PFPE)	-90 to 250 °C	Extremely stable, nonflammable, chemically inert, low vapor pressure fluids. Used in extreme environments and to avoid plastic and elastomer compatibility problems.
Polyalphaolefins (PAO)	-60 to 125 °C	Stable, lubricious fluids compatible with most plastics and elastomers. A drop-in replacement for petroleum, it's used in countless applications in many industries.
Polyglycols	-40 to 125 °C	Good load-carrying ability, compatible with most elastomers, non-carbonizing. Often used in arcing switches.
Polyphenylethers (PPE)	$+10$ to 250 $^\circ\text{C}$	Radiation, chemical, and acid-resistant fluids. Traditionally used for noble-metal connectors and high-temperature mechanical components.
Silicones	-70 to 200 °C	Stable fluids with good wetting characteristics. Commonly used with plastic gears, control cables, and seals.
Synthetic Esters	-65 to 150 °C	Excellent wear resistance, stable, affinity for metals, handles heavy loads. Great for loaded bearings.

COMPATIBILITY OF		Plastics													Elastomer								Solvent										
Synthetic Base oils	Acetal (POM)	ABS	Phenolic (PF)	Polyamide-imide (PAI)	Polyamide (nylon) (PA)	Polycarbonate (PC)	Polyester	Polyetherimide	Polyethylene (PE)	Polyimide (TPI)	Polyphenylene oxide (PPO)	Polystyrene	Polysulfone (PSU)	PTFE	Polyvinyl chloride (PVC)	Terephthalate (PBT)	Buna S	Butyl	EPDM, EPR	Fluoroelastomer	Natural Rubber	Neoprene	Nitrile	Silicone		Water	Water plus detergent	Isopropanol	Methanol	Mineral Spirits	Fluoroalkane	Hydrofluorocarbon	Hydrofluoroether
Synthetic Hydrocarbon Includes: polyalphaolefin (PAO) Viscosity Index (VI) = 125-250	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Ρ	G	G	F		I	w	I	I	S	I	I	I
Polyglycol Polyether Viscosity Index (VI) = 160-220	G	Р	G	G	G	Р	Р	G	F	G	Р	G	Р	G	Р	G	Р	Р	G	G	Ρ	Р	F	G		v	w	v	v	s	I	I	1
Ester Diester, polyolester Viscosity Index (VI) = 120-150	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Ρ	Ρ	F	F		I	w	I	I	S	I	I	I
Silicone Dimethyl-, phenyl-, halogenated Viscosity Index (VI) = 200-650	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ρ		I	w	I	I	S	I	1	I
Multiplyalkylated Cyclopentane Pennzane from Shell Viscosity Index (VI) = 135	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Ρ	G	G	F		I	w	I	I	s	I	I	1
Perfluoropolyether PFPE Viscosity Index (VI) = 100-350	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		I	w	I	I	I	s	v	v
Polyphenylether PPE Viscosity Index (VI) = 40-60	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Ρ	Ρ	F	F		I	w	I	I	S	I	I	1

ISO 9001:2015 ISO 14001:2015 ISO 13485: 2016 AS 9001D

IATF 16949:2016 **Nye Corporate Headquarters**

12 Howland Road, Fairhaven, MA 02719 USA Ph: +1.508.996.6721 | Email: contact@nyelubricants.com

GREASE GELLANTS COMMONLY USED AT NYE

Gellants are selected for their water and salt-water resistance, thermal stability, thickening efficiency, lubricity, and shear stabulity.

Organic Soaps	Organic Non-Soaps
Lithium	Urea
Lithium Complex	PTFE
Sodium	Inorganic
Sodium Complex	Bentonite Clay
Calcium	Silica
Calcium Complex	Hydrophobic Silica
Aluminum Complex	Metal Oxide

GREA	SE STIFFNESS /	ANALOGS
NLGI	Penetration (worked, 60x)	Analog (unworked)
000	445 - 475	Ketchup
00	400 - 430	Yogurt
0	355 - 385	Mustard
1	310 - 340	Tomato Paste
2	265 - 295	Peanut Butter
3	220 - 250	Butter
4	175 - 205	Ice Cream
5	130 - 160	Fudge
6	85 - 115	Cheese

KINEMATIC VISCOSITY OF COMMON FLUIDS KV (cSt @ 25°C) Material 20,000,000 Putty _ Chemically active protection of loaded 5.000.000 Taffy _ Slows corrosion of non-noble metals 10,000 Chocolate Syrup _ Thermal/electrical conductivity, special physical 1,000 Castor Oil _ Solids burnish into loaded surface under extreme 100 _ Gravy Reduces coefficient of friction, starting torque 3 Milk Reduces rate of change of viscosity with Water 1 _ Improves lower temperature limit .40 Almond Extract _ Visual/UV markers as inspection/assembly aids

CALCULATING THE APPROXIMATE UNIT COST OF SYNTHETIC GREASE IN U.S. DOLLARS

Amou Grease Pe (dia. in	r Device	Volume (cc)	Low Density	000 Units High Density c) (2gm/cc)	LD@\$10/lb	st Per Device . HD@\$100/lb. :c) (2gm/cc)
•	1	0.0003	0.066	0.13	\$0.000006	\$0.00013
•	2	0.0021	0.46	0.93	\$0.00005	\$0.0009
•	3	0.007	1.54	3.09	\$0.00015	\$0.003
	5	0.033	7.3	14.6	\$0.0007	\$0.015
	10	0.26	57.3	114.6	\$0.006	\$0.11

Member of the **FUCHS Group**

LUBRICANT ADDITIVES COMMONLY USED AT NYE Capabilities

metal surfaces

properties

pressures

Prolongs life of base oil

Slows rusting of iron alloys

Additive Type

Antioxidant

Antiwear (EP)

Antirust Anticorrosion

Filler

Fortifier (EP)

Lubricity

or stick/slip VI Modifier temperature Pour Point Dye