

NYE AUTOMOTIVE ENGINEERING CHART

Synthetic lubricants designed to add performance, life, and value to automotive product.

SYNTHETIC BASE OILS

Synthetic Oils	Temp Range (°C)	Key Characteristics/Typical Applications
Alkylated Diphenyl Ether (ADE)	-40 to 200	Good cold temperature properties, high thermal and oxidative stability, and good radiation resistance.
Alkylated Naphthalenes (AN)	-30 to 180	Compared to PAO and diesters, offer improved hydrolytic, thermal, and oxidative stability. Good blendstock for polyalphaolefins requiring high stability under extreme conditions.
Polyalphaolefins (PAO)	-60 to 125	Stable, lubricious fluids compatible with most plastics and elastomers. A drop-in replace- ment for petroleum, it's used in countless applications in many industries.
Polyglycols	-40 to 125	Good load-carrying ability, compatible with most elastomers, non-carbonizing. Often used in arcing switches.
Synthetic Esters	-65 to 150	Excellent wear resistance, stable, affinity for metals, handles heavy loads. Great for loaded bearings.
Silicones	-70 to 200	Stable fluids with good wetting characteristics. Commonly used with plastic gears, control cables, and seals.
Multiplyalkylated Cyclopentanes (MAC)	-45 to 125	Highly specialized fluid that combines the low vapor pressure of a PFPE with the lubricity and film strength of a PAO. Typically used in aerospace and critical vacuum applications.
Perfluoropolyethers (PFPE)	-90 to 250	Extremely stable, nonflammable, chemically inert, low vapor pressure fluids. Used in ex- treme environments and to avoid plastic and elastomer compatibility problems.
Polyphenylethers (PPE)	+10 to 250	Radiation, chemical, and acid-resistant fluids. Traditionally used for noble-metal connectors and high-temperature mechanical components.

LUBRICANT ADDITI	VES	GREASE	GREASE STIFFNESS ANALOGS					
Additive Type	Capabilities	NLGI Grade	Penetration (worked, 60x)	Analog (unworked)				
Anticorrosion	Slows corrosion of non-noble metals	000	445 - 475	Ketchup				
Antioxidant	Prolongs life of base oil							
Antirust	Slows rusting of iron alloys	00	400 - 430	Yogurt				
Antiwear	Chemically active protection of loaded metal surfaces	0	355 - 385	Brown Mustard				
Conductive Agent	Thermal/electrical conductivity, special physical properties	1	310 - 340	Tomato Paste				
Dye	Visual/UV markers as inspection/assembly aids	2	265 - 295	Peanut Butter				
Extreme Pressure (EP)	Solids burnish into loaded surface under extreme pressures	3	220 - 250	Margarine Spread				
Friction Modifier	Reduces coefficient of friction, starting torque or stick/slip	4	175 - 205	Hard Ice Cream				
Pour Point Depressants	Improves lower temperature limit							
Tackifier	Increases ability to adhere to moving parts	5	130 - 160	Fudge				
VI Modifier	Reduces rate of change of viscosity with temperature	6	85 - 115	Cheddar Cheese				

COMPATIBILITY OF		Plastics							Elastomers										
BASE OILS G Good F Fair P Poor	Acetal (POM)	ABS	Polyamide (nylon) (PA)	Polycarbonate (PC)	Polyester	Polyethylene (PE)	Polyimide (TPI)	Polyphenylene oxide (PPO)	Polystyrene	PTFE	Polyvinyl chloride (PVC)	Terephthalate (PBT)	Buna S	EPDM, EPR	Viton	Natural Rubber	Neoprene	Nitrile	Silicone
Synthetic Hydrocarbon Includes: PAO & AN Viscosity Index (VI) = 125-250	G	G	G	G	G	F	G	G	F	G	F	G	Р	Р	G	Р	G	G	F
Polyglycol Polyether Viscosity Index (VI) = 160-220	G	Р	G	Р	Ρ	F	G	Р	G	G	Р	G	Ρ	G	G	Р	Р	F	G
Synthetic Ester Diester, polyolester Viscosity Index (VI) = 120-150	G	Ρ	G	Ρ	Ρ	F	G	Ρ	Ρ	G	Ρ	G	Ρ	F	G	Ρ	Ρ	F	F
Silicone Dimethyl-, phenyl-, halogenated Viscosity Index (VI) = 200-650	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Р
Multiplyalkylated Cyclopentane Pennzane from Shell Viscosity Index (VI) = 135	G	G	G	G	G	F	G	G	F	G	F	G	Ρ	Р	G	Ρ	G	G	F
Perfluoropolyether PFPE Viscosity Index (VI) = 100-350	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Polyphenylether PPE Viscosity Index (VI) = 40-60	G	Р	G	Р	Р	F	G	Р	Р	G	Р	G	Р	F	G	Р	Р	F	F

GREASE GELLANTS									
Organic Soaps	Water Resistance	Salt Water Resistance	Thermal Stability	Low Noise Contribution	Thickening Efficiency	Lubricity	Shear Stability		
Lithium		0							
Sodium	\bigcirc	0	\bigcirc		\bigcirc				
Sodium Complex	\bigcirc	0							
Calcium		0	0		\bigcirc		Θ		
Calcium Complex							\bigcirc		
Calcium Sulfonate					\bigcirc				
Aluminum Complex		\bigcirc							
Organic Non-Soaps									
Polyurea							Θ		
PTFE					\bigcirc				
Inorganic									
Bentonite Clay				\bigcirc		\bigcirc			
Hydrophilic Silica	0	0				0	Θ		
Hydrophobic Silica						0	\bigcirc		
Metal Oxide	0	0		0	\bigcirc	0			

© 2019 Nye Lubricants, Inc. Automotive Engineering Office 440 East Maple Road, Suite A, Troy, MI 48083 USA Ph: +1.248.597.0077 | Email: contact@nyelubricants.com

